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We propose a self-consistent nonlocal approach for the description of vortices in layered supeconductors that
contain planar defects parallel to the layers. The model takes account of interlayer Josephson coupling and of
a reduced maximum Josephson current densityj 08 across the defect as compared toj 0 for other interlayer
junctions. Analytical formulas that describe the structure of both static and moving vortices, including the
nonlinear Josephson core region, are obtained. Within the framework of the model, we have calculated the
lower critical fieldHc1, vortex massM , viscous drag coefficientm, and the nonlinear current-voltage charac-
teristic V( j ) for a vortex moving along planar defects. It is shown that for identical junctions (j 085 j 0) our
approach reproduces results of Clem, Coffey, and Hao@Phys. Rev. B42, 6209~1990!; 44, 2732~1991!; 44,
6903 ~1991!# for m, M , andHc1. In the opposite limitj 08! j 0, our model gives an Abrikosov vortex with
anisotropic Josephson core described by a nonlocal Josephson electrodynamics. A sign change in the curvature
of V( j ) is shown to occur due to a crossover between underdamped (T!Tc) and overdampedT.Tc dynamics
of interlayer junctions as the temperatureT is increased. Implications of the results on thec-axis current
transport in high-Tc superconductors are discussed.@S0163-1829~96!02042-5#

I. INTRODUCTION

The discovery of high-temperature superconducting
~HTS! oxides has renewed considerable interest in the prop-
erties of vortex structures in highly anisotropic super-
conductors.1 Characteristic features of these materials in-
clude the noncollinearity of flux lines and applied magnetic
field H,2–4 fragmentation of line vortices into quasi-two di-
mensional pancake vortices,5 and formation of kinks on the
flux lines if H is not parallel to the symmetry axes.6 The
structure of a single fluxon essentially changes forH parallel
to the superconducting planes as well, due to weak interplane
coupling, which results in a strong deformation of the vortex
core7–12 and additional intrinsic pinning.13

Depending on the degree of anisotropy, different theoreti-
cal models are used for the description of vortex structure. At
moderate anisotropy, the linear London theory is used, which
ignores the layered structure of a superconductor but takes
into account its anisotropy via an effective mass tensor.2–4

This approach, valid as long as the coherence lengthj re-
mains much larger than the atomic length scales, enables one
to describe the distribution of screening currents everywhere
in the vortex except in the vicinity of the normal core, where
one has to invoke nonlinear equations for the superconduct-
ing order parameter.

In highly anisotropic layered superconductors or artificial
superlattices the interlayer superconducting coupling can be
so weak that the coherence length in the direction perpen-
dicular to the layersjc becomes smaller than the interlayer
spacings. In this case, the discreteness of the superconductor
at the atomic level dramatically affects the structure of the
vortex core.7–12 There are several models that take account
of the layered structure of a superconductor, for example, the
Lawrence-Doniach~LD! model, which describes a stack of

thin superconducting layers coupled by the Josephson
interaction.14 Another model is theS-N-S superlattice con-
sisting of alternating superconducting (S) and normal (N)
layers.8–12,15An important feature of such models is that, due
to weak Josephson interlayer coupling, the maximum super-
current densityj 0 between the layers is much smaller than
the intralayer depairing current densityj d . As a result, the
maximum current density that can be locally generated by a
vortex parallel to the layers is limited byj 0, and therefore the
magnitude of the order parameter remains the same in all
layers, including the layers closest to the vortex axis. This
enables one to use linear two-dimensional~2D! London elec-
trodynamics within the layers and retain only the most es-
sential Josephson nonlinearity of the interplane current den-
sity j 0sinwn . The resulting equations that describe the
distributions ofj „r … andb„r … in the vortex can be expressed
in terms of an infinite set of coupled sine-Gordon equations
for the gauge-invariant phase differenceswn(r )
(n50,61,62, . . . ) across the junctions between supercon-
ducting layers.16,17 These nonlinear difference equations,
based only on the Josephson relations and Maxwell equa-
tions, are insensitive to the microscopic mechanism of super-
conductivity.

Although obtaining single-vortex solutions of the equa-
tions for wn(r ) is a fairly complicated mathematical prob-
lem, a qualitative description of a vortex parallel to the layers
proves to be similar to that of an Abrikosov (A) vortex.18

Namely, there is an outer region of circulating screening cur-
rents which flow around the vortex axis and decay exponen-
tially in the directions parallel (y axis! and perpendicular
(z axis! to the layers. Here the phaseswn(r ) change
smoothly over the interlayer spacings, and the LD model
reduces to the London equation with some effective penetra-
tion depthsly andlz . Furthermore, there is a central non-

PHYSICAL REVIEW B 1 NOVEMBER 1996-IIVOLUME 54, NUMBER 18

540163-1829/96/54~18!/13196~11!/$10.00 13 196 © 1996 The American Physical Society



linear core region wherewn(r ) varies significantly over the
length ;s, with the phaseswn(r ) on the different layers
being coupled via the long-range~over scalesl@s) mag-
netic fieldb„r …. Here the discreteness of the superconductor
becomes essential, and the long-range interaction ofwn(r )
across the different layers ultimately results in a nonlocal
relation between the interlayer currentj „r … and the phase
gradient¹wn(r ).

Such a nonlocality caused by the long-range magnetic
coupling occurs if the phasew(r ) changes on a scale shorter
than that ofb„r …. This, for example, can occur in a single
high-j c Josephson contact in the strong-coupling limit for
which the Josephson penetration depthlJ becomes smaller
thanl and the local Josephson electrodynamics based on the
sine-Gordon equation becomes invalid. In this case the con-
tact is described by integral equations of nonlocal Josephson
electrodynamics19–23which can also describe the interaction
of A vortices with planar crystalline defects.24 Another ex-
ample is weak links in thin films of thicknessd!l, where
the Josephson nonlocality is strongly enhanced by the large
penetration depthleff5l2/d due to long-range magnetic
fields outside the film.25–29 Therefore, the Josephson nonlo-
cality results from a long-range magnetic fieldb, which can
be due to both superconducting properties of the contact and
the sample geometry. A similar situation occurs for vortices
in layered superconductors, since the Josephson core size can
be comparable with the interlayer spacings and nonlocality
occurs ifs!l,16,30which holds in HTS oxides, if one treats
s as a distance between the CuO2 planes (s;10 Å!, or typi-
cal planar defects, say, twins in the ab planes or stacking
faults perpendicular to thec axis (s;100–1000 Å!.31

Due to the short coherence lengthjc,s in layered HTS
oxides, planar defects parallel to theab planes can strongly
reduce interlayer coupling, thus limiting the current flow
along thec axis and enhancing the magnetic field penetration
along the defects. This may be essential for the interpretation
of current transport along thec axis in HTS oxides, which
often contain numerous planar defects parallel to theab
planes~stacking faults, intergrowths of low-Tc phases, etc.!31

At small jc , these defects can strongly reduce the local
maximum supercurrentj 08 as compared toj 0, thus becoming
a significant limiting factor for thec-axis current transport,
which may be determined by vortex dynamics and pinning
along defects rather than by the inherent interlayer Josephson
coupling. Recently, this problem has attracted much attention
due to the observation of an intrinsic Josephson effect which
may clarify the nature of the interlayer coupling in HTS
oxides.32 The c-axis current transport can also play an im-
portant role in determining the current-carrying capability of
Bi-based tapes.33,34

In this paper we apply the nonlocal Josephson electrody-
namics to describe both a static and a moving vortex at pla-
nar defect in layered superconductors, assuming that the vor-
tex and the defects are parallel to the planes, and that the
critical current density across the defectj 08 differs from the
interlayer critical current densityj 0. This case, for example,
corresponds to a vortex parallel to theab plane in HTS ox-
ides in the presence of a stacking fault or a vortex in a su-
perconducting superlattice in a longitudinal magnetic field.
The paper is organized as follows.

First we obtain a set of coupled nonlinear integral equa-
tions which describe the distribution of the phase differences
wn(r ) across the layers. Then we propose a self-consistent
mean-field approach, which enables one to obtain static and
moving single-vortex solutions that describe both the circu-
lating currents and the vortex core. For a stack of identical
layers (j 085 j 0) this approach in the static case reproduces
the results of Clem, Coffey, and Hao,8,9 and decribes a cross-
over between an Abrikosov vortex with a highly anisotropic
Josephson (J) core and a pureJ vortex if j 08 is decreased
from j 08; j 0 to j 08! j 0. Making use of these solutions, we
calculate the lower critical fieldHc1, vortex mass, mobility,
and the nonlinear voltage-current characteristics for a vortex
moving along a planar defect. Implications for thec-axis
transport in layered HTS oxides are discussed.

II. MODEL AND MAIN EQUATIONS

We model a layered superconductor as a periodic infinite
stack of thin nonsuperconducting (N) layers of thickness
d!s embedded in an anisotropic superconducting (S) ma-
trix characterized by the uniaxial tensor of magnetic penetra-
tion depthslab ~Fig. 1!. One of the orthogonal principal
axesz of lab is perpendicular to the layers, which are situ-
ated atzn5ns, n50,61,62, . . . , and theprincipal values
of lab are lzz5lc and lxx5lyy5lb , respectively. The
subscripts on these principal values ofl correspond to the
supercurrent direction. For example, induced screening cur-
rent flowing in the superconducting matrix only in thez di-
rection decays exponentially over the lengthlc . It is as-
sumed that theN layers can be considered as planar
Josephson contacts, all layers but the central one (n50)
having the same critical current densityj 0. The layer with
n50 represents a planar defect which has a critical current
density j 08 smaller thanj 0. We are interested in the depen-
dence of the properties of a vortex localized at the defect
upon j 08 and the parameters of the superconductor. Before

FIG. 1. Sketch of the geometry of the layered superconductors.
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deriving the integral equations for the phase distribution
wn(r ), we consider the linear screening in the layered super-
conductor shown in Fig. 1 and obtain formulas for effective
magnetic penetration depthsly andlz, needed later on.

A. Linear screening

In this section we calculate the macroscopic magnetic
penetration depthsly andlz in the case of the magnetic field
b directed along thex axis ~parallel to the layers in Fig. 1!.
For instance, ifb(y,z) changes only along thez axis, such
that the current density flows only parallel to they axis, the
penetration depthly just coincides withlb , since the thick-
ness of theN layers is much less than that of theS layers.1

We next consider the case for whichb(y,z) is periodic along
the z direction @b(y,z)5b(y,z1s)#, but decays exponen-
tially along they axis over the penetration depthlz associ-
ated with currents perpendicular to theN layers which de-
pend on j 0. To calculatelz , we consider variations of
b(y,z) described by the London equation

lc
2 ]2b

]y2
1lb

2 ]2b

]z2
2b52

f0

2p(
n

]wn

]y
d~z2ns!, ~1!

wherewn(y) is the gauge-invariant phase difference of the
superconducting order parameter across thenth Josephson
contact. Here the right-hand side of Eq.~1! ensures the well-
known boundary condition on theN layers,35

]wn

]y
5
8p2lb

2

cf0
@ j y~y,ns10!2 j y~y,ns20!#. ~2!

Indeed, if we integrate Eq.~1! over z from z5ns20 to
z5ns10 and use the continuity ofb at z5ns, we obtain

]b~y,ns10!

]z
2

]b~y,ns20!

]z
52

f0

2plb
2

]wn

]y
. ~3!

By expressing]b/]z in Eq. ~3! in terms of j y by the Max-
well equation]b/]z54p j y /c, we recover Eq.~2!. Here the
thickness of theN layers is assumed to be negligible com-
pared withs andlc . We also Fourier transform Eq.~1! in
y, taking into account that forb(y,z1s)5b(y,z) the gauge-
invariant phase differenceswn(y) are the same for alln. In
terms of the Fourier components

bk~z!5E
2`

`

b~y,z!e2 iky dy, wk5E
2`

`

w~y!e2 ikydy,

~4!

Eq. ~1! and the boundary condition~3! take the form

lb
2bk92~11lc

2k2!bk52
ikf0

2p
wk(

n
d~z2ns!, ~5!

bk8~ns10!2bk8~ns20!52
ikf0

2plb
2wk , ~6!

where the prime denotes differentiation with respect toz.
Since the solutions of Eqs.~5! and ~6! are periodic inz, we
consider only the domain 0,z,s, for which

bk~z!52
ikf0wkcoshq~z2s/2!

4plb
2qsinh~qs/2!

, ~7!

with q5(11k2lc
2)1/2/lb . From Eq. ~7!, we can calculate

the Fourier transform of thez component of the current den-
sity j , j zk(z)52 ikcbk(z)/4p, and evaluate it atz50 or
z5s, where j z(0) should be equal to the Josephson current
density j J5 j 0sinw through the contact. In the regime of lin-
ear screening (u j Ju! j 0), we have j J5 j 0wk ; by equating
j zk(0) to j J(k), we obtain the self-consistency condition

2
k2f0c

16p2lb
2q tanh~qs/2!

5 j 0 . ~8!

Although in Eq.~4! we have allowed for arbitrary values of
k, Eq. ~8! has in fact only two rootsk56 i /lz(s), which
correspond to the solutions which vary exponentially along
the y direction over the penetration depthlz(s). While
lz(s) can be determined numerically from Eq.~8! for arbi-
trary s, it is more convenient to express this relationship in
terms of the inverse functions„lz(s)…, given by

s~lz!5
lzlb

Alz
22lc

2
lnFlzAlz

22lc
21lJ

2

lzAlz
22lc

22lJ
2G , ~9!

where

lJ5S cf0

16p2lbj 0
D 1/2. ~10!

Now we consider some limiting cases. In the weak-coupling
limit lz@lc , Eq. ~9! yields

lz5lJcoth
1/2S s

2lb
D . ~11!

Hence it follows that the lengthlz(s) decreases ass in-
creases, approachinglJ at s@la . At small s!lb , Eq. ~11!
gives8,36

lz5S cf0

8p2s j0
D 1/2. ~12!

Equation~11! is valid if lJ@lc .
1 Using Eq.~10!, we find

that the inequalitylJ.lc can be written in the form of
j 0, j l , where

j l5
cf0

16p2lc
2lb

. ~13!

For j 0. j l the Josephson penetration depth (lJ) becomes
smaller thanlc , which corresponds to a nonlocal Josephson
electrodynamics for a single contact.19

B. Nonlinear equations forwn

In this section we derive integral equations forwn(y) that
take into account the long-range magnetic coupling of the
layers and the nonlinearity of the Josephson interlayer cur-
rents. This can be done by means of the Green function
G(r,r 8) of Eq. ~1!,
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G~r,r 8!5
1

2plblc
K0S F ~y2y8!2

lc
2 1

~z2z8!2

lb
2 G1/2D ,

~14!

whereK0 is a modified Bessel function. From Eqs.~1! and
~14!, we obtain the field distributionb(y,z) in the form

b~y,z!5
f0

4p2lblc

3(
m

E
2`

`

K0S F ~y2u!2

lc
2 1

~z2ms!2

lb
2 G1/2D ]wm

]u
du.

~15!

In order to get the equations forwn(y), we use the Max-
well equation

c

4p

]b~y,ns!

]y
5 j 0nsinwn1

\

2eR

]wn

]t
1
C\2

4e2
]2wn

]t2
,

~16!

where the right-hand side represents the sum of the Joseph-
son, resistive, and displacement current densities through the
nth N layer,R andC are the specific interlayer resistance
and capacitance, respectively, and2e is the electron charge.
Substituting Eq.~15! into Eq. ~16! and integrating by parts,
we arrive at the following equations forwn(y):

]2wn

]t2
1h

]wn

]t
5
l 0
p(

m
E

2`

`

K0S F ~y2u!2

lc
2 1

~n2m!2s2

lb
2 G1/2D

3
]2wm

]u2
du2sinwn . ~17!

Heret5tvJ is the dimensionless time,vJ5(2e j0 /\C)
1/2 is

the Josephson plasma frequency,h51/RCvJ is the dimen-
sionless damping constant due to the resistive currents, and
l 0 is the characteristic nonlinear screening length,

l 05
cf0

16p2 j 0lblc
. ~18!

When deriving Eq.~17!, we assumed that all contacts are
identical. In the case of theN layers with differentj 0n , the
stationary equations forwn(y) become

l 0
p(

m
E

2`

`

K0S F ~y2u!2

lc
2 1

~n2m!2s2

lb
2 G1/2D ]2wm

]u2
du

5bnsinwn , ~19!

wherebn5 j 0n / j 0, and j 0 is the mean value ofj 0n . We shall
use Eq.~19! for the description of a vortex on a single-defect
N layer (n50), which has a reduced critical current density
j 08, j 0. Notice that Eqs.~17!–~19! can be obtained from the
variational principle

h
]wn

]t
52

dS

dwn
, ~20!

where S5*£dt is the dimensionless action, and the La-
grangian £ is given by

£52
l 0
2p(

n,m
E

2`

`

dy1E
2`

`

dy2

3K0S F ~y12y2!
2

lc
2 1

~n2m!2s2

lb
2 G1/2D ]wm~y1!

]y1

]wn~y2!

]y2

2(
n
E

2`

`

dyFbn~12coswn~y!!2
1

2 S ]wn~y,t!

]t D 2G .
~21!

Here the first term in the right-hand side of Eq.~21! de-
scribes the magnetic energy and the kinetic energy of super-
conducting currents inS layers. The diagonal terms
(m5n) correspond to self-energy, while the off-diagonal
terms describe the magnetic interactions between different
layers. The second term describes the Josephson energy, and
the third one corresponds to the energy of the electric field
stored in the Josephson contacts. The Lagrange form can be
useful when describing dynamics of Josephson vortices at
low temperatures, for example, for calculation of quantum
flux creep in layered superconductors.37

C. Mean-field approach

In the general case, the nonlinear integral equation~19! is
very complicated, and so we consider here a mean-field ap-
proach which enables one to obtain analytical single-vortex
solutions forwn(y) andb(y,z). We consider here the most
interesting cases!lb,c , for which the magnetic field
b(y,z) varies smoothly over the interlayer spacing, and the
vortex has two characteristic regions similar to those of an
A vortex. First there is a core region much smaller than
lb,c , where the phasewn(r ) changes over the length;s,
and the current density is of the order ofj 0. Here both the
discreteness of the superconductor and the nonlinearity of
the interlayer Josephson currents become very important.
Furthermore, there is a region of circulating screening cur-
rents which decay exponentially over the lengthsly andlz
along thez andy axes, respectively. In this region the phase
differenceswn(r ) are small and change slowly over the in-
terlayer spacing, andj „r … is much smaller thanj 0. This re-
gion can be described by the linear London equation with the
above effective penetration depthsly andlz ,

lz
2 ]2b

]y2
1ly

2 ]2b

]z2
2b52

f0

2p

]w

]y
d~z!, ~22!

where the right-hand side of Eq.~22! results from the vortex
core located at the central defect layer (n50) and
w(y)5w0(y). Since the phasew(y) in the vortex changes
from 0 to 2p as y runs from 2` to `,8 the derivative
]w/]y in Eq. ~22! can be replaced by 2pd(y) at distances
from the core much larger than its size. Then Eq.~22! re-
duces to the well-known London equation for anA vortex in
an anisotropic uniform superconductor. However, there is a
qualitative difference between the normal core of anA vor-
tex and the Josephson core of the vortex in the layered su-
perconductors. For anA vortex, the core appears because of
the suppression of the superconducting order parameter,
since the screening current density at its center attainsj d .

18

By contrast,j „r … in the vortex in layered superconductors is
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limited by the Josephson interlayerj 0, which is always much
smaller thanj d . As a result, the normal core is absent and
the order parameterD(r ) remains constant everywhere in the
vortex including the core region, which is now defined as a
domain of significant variation of the phaseswn(r ), where
j (r ); j 0.
These qualitative features of layered superconductors en-

able one to propose the following self-consistent mean-field
description of the vortex based on the exact Eq.~19!. Let us
consider the central defect layer (n50), wherej (r ) is maxi-
mum at a planar weak link embedded in a continuous aniso-
tropic superconductor with the effective penetration depths
ly and lz . In other words, we take into account the most
essential nonlinearity of the Josephson current across the
central layer and replace the rest of the sample by an effec-
tive medium that provides a linear magnetic screening of
circulating currents outside the core, where the phases
wn(r ) are small and vary smoothly over scales of orders.
Therefore, the equation forw(y) can simply be obtained
from Eq. ~19! by retaining only the term withn50 and
replacinglb andlc by ly andlz , respectively. When de-
scribing the structure of the core, one can further simplify
Eq. ~19! by taking into account that the phasew(y) sharply
decays over the core sizel , which is much smaller than
lc . In this case the Bessel functionK0(uy2uu/lc) in Eq.
~19! changes much more slowly than the derivative
]2w(u)/]u2 and thereby can be replaced by its expansion at
small argument,K0(r )5 ln(2/r )2C, whereC50.577 is the
Euler constant.38 Then the equation forw(y) takes the form

l

pE2`

`

lnS lz

uy2uu D ]2w

]u2
du5sinw. ~23!

Herelz under the logarithm does not affect the solutions of
Eq. ~23!, which satisfy the boundary conditions]w/]y50 at
y56`. The lengthl in Eq. ~23! is

l5
cf0

16p2lylzj 08
'
slzj 0
2ly j 08

, ~24!

wherej 08 is the critical current density across the defect layer.
Likewise, one can obtain the field distributionb(y,z) at the
distance (r!ly,z) from the core in the form

b~y,z!52
f0

8p2lylz
E

2`

` F lnS z2

4ly
2 1

~y2u!2

4lz
2 D 12CG]w

]u
du.

~25!

The above expansion of the kernelK0(y2u) implies that at
l!lz the London screening of the circulating currents does
not affect the structure of the vortex core described by the
solution of Eq.~23!. In this case the relation between the
magnetic fieldb(y,z) and the phase gradient]w/]y becomes
nonlocal; that is, the fieldb(y) at the pointy is determined
not only by the value of]w/]y at the same point but by the
values]w/]u within the domainuy2uu, l as well. Such a
nonlocality results from the coupling of differentN layers by
the long-range magnetic fieldb(y,z). In the opposite limit
l@lz the phasew(u) changes slowly as compared to the
kernel K0(y2u), which thus can be replaced by
pd(y2u). In this case Eqs.~19! turn into decoupled sine-
Gordon equations which describe noninteractingN layers in

anisotropic superconductor, and Eq.~15! gives the known
formula b(y)5(f0]w/]y)/4plc of local Josephson
electrodynamics.35 Notice also that Eq.~23! turns out to be
similar to the equation which describes dislocations in crys-
talline potential. This analogy can be quite useful, enabling
the use of extensive results of dislocation theory39 to obtain
solutions which describe vortex structures.22,23

The nonlinear integral equation~23! has the following
single-vortex solution19

w~y!5p12 tan21S yl D , ~26!

which describes the structure of the Josephson core. The
nonlocal screening lengthl defines the characteristic core
size along the layers. For identical layers, Eq.~26! was also
obtained in Refs. 7 and 8 by another method. Substituting
Eq. ~26! into Eq. ~25! and performig the integration, we find
b(y,z) in the regiony2/lz

21z2/ly
2!1 in the form

b~y,z!52
f0

4plylz
H lnF y24lz

2 1S l

2lz
1

uzu
2ly

D 2G12CJ .
~27!

The components of the current densityj „r … are given by

j y5
c

4p

]b

]z
52

cf0lz

8p2ly

~ l'1uzu!sgn~z!

@y2ly
21~ l'1uzu!2lz

2#
, ~28!

j z52
c

4p

]b

]y
5
cf0ly

8p2lz

y

@y2ly
21~ l'1uzu!2lz

2#
, ~29!

wherel'5 lly /lz . The distributions ofj y(y,0) and j z(y,0)
on the central layer are shown in Fig. 2. The field distribution
b(y,z) and the current lines corresponding to contours of
constantb(x,y) are shown in Figs. 3~a! and 3~b!.

Using Eqs.~12! and ~24!, one can write

l'5
cf0

16p2lz
2 j 08

's
j 0
2 j 08

. ~30!

FIG. 2. The current distributionsj y(y,z50) and j z(y,z510)
at the central layer forl'5ly .
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The phasewn with nÞ0 can be calculated from the condi-
tion j z(ns)5 j 0wn , wherej z(ns) is given by Eq.~29!. From
Eqs.~12! and ~29!, we obtain

wn~y!5
slzlyy

y2ly
21~ l'1sunu!2lz

2 . ~31!

For l 2/lz
2!y2/lz

21z2/ly
2!1, Eqs.~27!–~29! reduce to the

well-known formulas for the field distribution in anA vortex
in an anisotropic superconductor with the penetration depths
ly and lz . However, in contrast to anA vortex, the mag-
netic fieldb(y,z) and the current densityj (y,z) in the center
of the vortex in layered superconductors remain finite, and
Eqs. ~27!–~31! describe not only the circulating screening
currents in the vortex, but also the core region. As it follows
from Eqs.~26!, ~28!, and~29!, the phase gradient]w/]y and
the componentsj y(y,0) and j z(y,0) decay over the lengthl
which determines the core size along the layers. In layered
HTS oxides the core lengthl given by Eq.~24! can be much
larger thans, sincelz@ly , and j 08, j 0.

Let us now consider the change of the current-density
componentsj y(y,z) and j z(y,z) in the direction perpendicu-

lar to the layers. As seen from Eqs.~28! and~29! and Fig. 2,
the valuesj y(y,ns) and j z(y,ns) are maximum aty50 and
y5ym56( l'1sunu)lz /ly , respectively. Using Eq.~30!,
we find that the maximum values ofj y and j z on the layers at
y.0 are given by

j y
max~n!52

2lz

ly

j 08sgn~n!

112unu j 08/ j 0
, ~32!

j z
max~n!5

j 08

112unu j 08/ j 0
. ~33!

Here both j y
max(n) and j z

max(n) decrease over the length
l'5s j0/2j 08 . For identical layers (j 085 j 0), we get
l'5s/2.8,9 However, in the presence of the planar defect the
length l' increases asj 08 decreases, becoming much larger
thans for j 08! j 0.

Since bothl andl' are much smaller thanly andlz , one
can generalize Eq.~27! by taking into account the whole
region of the screening currents in the vortex. An interpola-
tion formula which gives correct asymptotics ofb(y,z) both
at small and large distances from the core can be written as

b~x,y!5
f0

2plzly
K0F S y2lz

2 1
~ l'1uzu!2

ly
2 D 1/2G . ~34!

At y2/lz
21z2/ly

2!1, Eq. ~34! reduces to Eq.~27!. In the
opposite case of large distances, the core structure becomes
unimportant. Then one can putl'50 in Eq. ~34!, which
gives b(y,z) of an anistropicA vortex. Notice that in the
vicinity of the vortex core, the self-consistent equation~34!
somewhat differs from

b~y,z!5
f0

2plzly
K0F S y2lz

2 1
z2

ly
2 1

l'
2

ly
2D 1/2G , ~35!

which has been obtained in Refs. 1, 8, and 9 within the
framework of a variational approach. This results in a differ-
ence inwn with nÞ0 given by Eq.~31! as compared to the
formulas of Refs. 8 and 9, althoughw(y) on the central layer
described by Eq.~26! coincides with that of Refs. 8 and 9.

Formulas ~27!–~29! allow a clear geometrical
interpretation,19 if one takes account of the fact that for
l'50 they describe anA vortex. Hence, it follows that at
l'Þ0, the current lines in the half-planez.0 coincide with
that of a fictitiousA vortex placed at the pointz52 l' .
Likewise, the fieldb(x,y) for z,0 is given by a fictitious
vortex atz5 l' @see Fig. 3~b!#. For z@ l' , such a field con-
figuration reduces to that of anA vortex, and the discreteness
of the superconductor manifests itself only in the core region
uzu, l' and uyu, l . Notice that for the planar weak link
( j 08! j 0) the distance 2l' between the fictitiousA vortices is
much larger thans; thus, the effective-medium approach
holds everywhere, including the vortex core. However, for
identical layers (j 085 j 0), the distance 2l' becomes of the
order s. Here, the discreteness of the superconductor be-
comes essential and the structure of current lines in the core
region changes as shown in Ref. 9. In this case, which has
been considered in detail in Refs. 8 and 9, the above geo-
metrical interpretation ofb(y,z) is valid only qualitatively.

FIG. 3. ~a! The field distributionb(y,z) in theyz plane.~b! The
current lines in the vortex-region in the case ofj 08! j 0, l50.1lz ,
andlz /ly57.
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To conclude this section, we discuss the validity of the
mean-field approach in which the central layer is described
exactly and the rest of the sample is replaced by a continuous
effective medium which provides a linear magnetic screen-
ing. As seen from Eq.~33!, the maximum current density
across the layers is limited by the valuej 08 . Thus atj 08! j 0
one can always linearize the interlayer Josephson current
j 0sinwn , obtaining the above formulas for the linear London
screening with effective penetration depthsly and lz . As
for identical layers, we havej z

max(n)5 j c /(112unu), and so
the linear approximation, strictly speaking, becomes invalid
since j z across the layers withnÞ0 remains of orderj 0.
However, even in this limiting case the maximum values of
j z across the neighboring layers are numerically small
( j z

max5 j 0/3,j 0/5, . . . atn51,2, . . . , respectively!. The latter
enables one to use the effective-medium approach near the
vortex core even atj 085 j 0.

III. LOWER CRITICAL FIELD Hc1

In order to calculate the lower critical fieldHc1
54pF/f0, we consider the free energy of a single vortex
localized on the planar defect,F5Fm1FJ , whereFm is the
free energy associated with the magnetic field energy and the
kinetic energy of the screening superconducting currents,

Fm5E E Fb21lz
2S ]b

]yD
2

1ly
2S ]b

]zD
2Gdydz8p

, ~36!

andFJ is the Josephson-coupling free energy,

FJ5
\ j 08

2e E ~12cosw!dy, ~37!

wherew is determined by Eq.~26!. HereFJ , which can be
regarded as the vortex-core energy, does not contain contri-
butions from layers withnÞ0. These terms are automati-
cally taken into account in the electromagnetic part ofFm by
replacinglb by ly andlc by lz . We calculateFm by ex-
pressingb(y,z) in Eq. ~36! via w(y) by using Eq.~25!. In
the mean-field approximation (m50,lb5ly ,lc5lz) this
yields

Fm5
f0
2

64p4lylz
E

2`

`

K0F uy12y2u
lz

G ]w

]y1

]w

]y2
dy1dy2 .

~38!

It is convenient to write Eq.~38! in terms of the Fourier
componentsw8(k) of the phase gradient]w/]y,

Fm5
f0
2

128p4ly
E

2`

` uw8~k!u2

A11k2lz
2
dk. ~39!

For a single vortex the Fourier transform of the derivative of
Eq. ~26! gives

w8~k!52p exp~2 l uku!. ~40!

Substituting Eq.~40! into Eq. ~39! and performing the
integration,38 one finds

Fm5
f0
2

32plylz
FE0S 2llz

D2N0S 2llz
D G , ~41!

whereE0(u) andN0(u) are the Weber and Neumann func-
tions, respectively. Equation~41! can be simplified if the
core sizel is much smaller thanlz . Thenu52l /lz!1 and
one can use the following asymptotic expansionsE0;u and
N0(u)'2@ ln(u/2)1C#/p, whereC50.577 is the Euler con-
stant. Hence

Fm5
f0
2

16p2lylz
F lnS lz

l D2CG . ~42!

In order to calculate the Josephson energyFJ , we substitute
Eq. ~26! into Eq. ~37! and obtain

FJ5
\ j 08

e È`

sin2
w

2
dy5

p\ j 08l

e
. ~43!

By addingFm andFJ , we obtain

Hc15
f0

4plylz
F lnS lz

l D1gG , ~44!

whereg512C50.423. At s!ly , one can use Eqs.~12!
and ~24! to expressHc1 in the form

Hc15
f0

4plylz
F lnS ly j 08

s j0
D 1g1G , ~45!

with g15 ln2112C51.116. Notice thatHc1 depends loga-
rithmically on j 08 , the maximum supercurrent across the de-
fect layer.

For identical layers (j 085 j 0), Eq. ~45! reduces to that ob-
tained by Clemet al.9 by another method~numerical calcu-
lations ofHc1 have been carried out in Ref. 40!. If j 08! j 0,
there are several different regimes. Forj 08, j l; j 0s/ly the
core lengthl along the layers becomes of the order oflz and
the vortex considered above turns into a Josephson vortex in
an anisotropic superconductor for whichHc1;f0 /lJly .

35

The increase ofj 08 above j l results in the transformation of
the Josephson vortex into an Abrikosov vortex but with a
Josephson core, which can be considered as an intermediate
stage between the pure Josephson vortex and the Abrikosov
vortex with a normal core, which appears atj 08; j 0; j d .

19

IV. VORTEX MASS AND MOBILITY

The above results allow us to calculate the inertial vortex
massM and the viscous drag coefficientm. Let the vortex
move along they axis with a constant velocityv much
smaller than the Swihart velocitycs5lJvJ . This causes the
inductive voltagesVn across theN layers,

Vn5
\

2e

]wn

]t
52

\v
2e

]wn

]y
, ~46!

wherewn(y,t)5wn(y2vt). As a result, the kinetic energy
of the moving vortex,Mv2/2, is determined by the total en-
ergy of the electric field stored in theN-layers:41,42
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M5
1

v2(n CnE
2`

`

Vn
2dy5S \

2eD
2

(
n

CnE
2`

` S ]wn

]y D 2dy,
~47!

whereCn is the specific capacitance of thenth contact and
wn(y) is the static distribution of the phase differences. Sub-
stituting Eqs.~26! and ~31! into Eq. ~47!, we obtain

M5
p\2

2e2 FC0

l
1
2Cly

slz
f S j 0
2 j 08

D G , ~48!

where

f ~a!5
1

8(n51

`
1

~n1a!3
, ~49!

andC0 andC are the specific capacitances of the central and
the remaining identical layers, respectively. The function
f (a) can be expressed in terms of the Riemann zeta function
z(3,a).38 The asymptotics off (a) are

f S 12D5
7

8
z~3!2150.052 ~ j 085 j 0!, ~50!

f ~a!5
1

16a2 , a@1. ~51!

Substitutings given by Eq.~9! into Eq.~48!, we can express
M in terms of measured macroscopic parameters. For in-
stance, in the cases!ly , for which lz(s) is given by Eq.
~12!, Eq. ~48! becomes

M5
8p j 08f0lylz

c3
@C012aCf~a!#, a5

j 0
2 j 08

. ~52!

As seen from Eq.~52!, the main contribution toM comes
from the central layer.8,9 The contribution from the layers
with nÞ0 is maximum for identical layers
( j 085 j 0 ,b51/2) and rapidly decreases asj 08 decreases. For
the casej 085 j 0 andC05C, Eq. ~52! reduces to that obtained
by Coffey and Clem,41 except for a difference in the values
of f @f (1/2)50.113 in Ref. 41# due to the above-mentioned
difference in the vortex core structure given by Eq.~34! as
compared to Eq.~35! used in Ref. 41. As a result, the value
of M given by Eq.~52! is smaller than that of Ref. 41 by
'5%. At j 08! j 0, the vortex mass is entirely determined by
the central layer and linearly increases withj 08 , similar to
that of a single high-j c Josephson contact in a continuous
superconductor.19 For an Abrikosov vortex which corre-
sponds to strong interlayer coupling,l';j, Eq. ~52! de-
scribes the electromagnetic contribution toM , though in this
case there is a much larger contribution toM due to electrons
localized in the normal core.43

Likewise, one can calculate the viscous drag coefficient
m. Let the vortex move at a constant velocityv!cs . Then
one can obtainm by equating the total power disspated in the
vortex tomv2, which yields8,44,45

m5S \

2eD
2

(
n

1

Rn
E

2`

` S ]wn

]y D 2dy, ~53!

whereRn are specific resistances of theN layers. By com-
paring Eqs.~47! and ~53!, we see thatm can be obtained
from the above formulas forM by replacingCn by 1/Rn .
Hence

m5
p\2

2e2 F 1

lR0
1

2ly

slzR
f S j 0
2 j 08

D G . ~54!

For s!ly , this takes the form

m5
8p j 08f0lylz

c3 F 1R0
12a

f ~a!

R G , ~55!

whereR0 andR are the linear resistivities of the central and
the remaining identical layers. As forM , the main contribu-
tion tom comes from the central layer, with the other layers
giving a much smaller contribution, which becomes negli-
gible for j 08! j 0. By comparing Eqs.~52! and ~55!, we see
that the dependence ofm upon j 08 ands coincides with that
of M . For identical layers Eq.~55! reduces to the formula
obtained by Clem and Coffey,8 except for the difference in
f . At j 08! j 0, Eq. ~54! also reproduces the formula form
which has been obtained within the framework of nonlocal
Josephson electrodynamics for a vortex localized at a high-
j c planar defect in a continuous superconductor.19

V. NONLINEAR RESISTIVITY

The linear vortex mobilitym calculated in the previous
section corresponds to small velocitiesv!cs for which the
difference in structure of the moving and static vortex does
not affectm. In this case the vortex velocity is proportional
to the driving Lorentz force, which implies an Ohmic
voltage-current (V-I ) characteristic. For largev, the struc-
ture of the Josephson core can strongly change withv, which
in turn gives rise to a nonlinearV-I characteristic due to the
dependence ofm on v. In this section we consider this effect
for a vortex moving along a planar defect withj 08! j 0 and
with a uniform transport currentj (t) flowing perpendicular
to the defect plane. The phase distributionwn(y,t) for the
moving vortex is therefore described by the set of dynamic
integral equations represented by Eq.~17!. In the mean-field
approach they reduce to a single integral equation which de-
scribesw(y,t) at the central layer:

h
]w

]t
5

l

pE2`

`

lnS lz

uy2uu D ]2w

]u2
du2sinw1b, ~56!

whereb(t)5 j (t)/ j 08 is the dimensionless transport current
density, which generally depends on time. Here we restrict
ourselves to the overdamped caseh@1 in the absence of
pinning, neglecting for simplicity the displacement and resis-
tive currents through all layers but the defect one. The latter
allows one to use the static effectively andlz in Eq. ~56!.
As was shown in Refs. 21 and 46, the solution of Eq.~56!
has the form

w~y,t !5u~ t !1p12 tan21Fy2u~ t !

L~ t ! G , ~57!

where the functionsu(t), u(t), andL(t) obey the following
set of ordinary differential equations:
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u̇1sinu5b~ t !, ~58!

L̇1L cosu5 l , ~59!

u̇52L sinu. ~60!

Here the overdot implies differentiation with respect to the
dimensionless timet/t0, where t05f0/2pcR0 j 08 is the
Ohmic time constant. Equation~58! describes the relaxation
dynamics ofu(t) in an overdamped Josephson junction.35

Equations ~59! and ~60! describe the dynamics of the
Josephson-core widthL(t) and velocityv(t)52du/dt, re-
spectively. As seen from Eq.~57!, the shape of the phase
core,w(y,t) in the overdamped case, remains self-similar for
any ac transport currentj (t), since the time dependence
manifests itself only in the scaling functionsL(t) andu(t).
In addition, Eq.~58! turns out to be decoupled from Eqs.
~59! and ~60!, which makes the nonlinear dynamics of the
vortex fully integrable for any givenu(t).46 The distributions
of b(y,z,t), j y(y,z,t), and j z(y,z,t) for the moving vortex
can be obtained from the static Eqs.~28! and~29! by replac-
ing l by L(t) andy by y2u(t).

Now let us consider a particular case of a dc current
( u̇50, u5sin21b) for which Eqs.~58!–~60! become alge-
braic. Then the core widthL(b) and velocityv(b) are given
by

L5
l

A12b2
, ~61!

v5
v0b

A12b2
, ~62!

where

v05
c2R0

8plylz
. ~63!

These formulas generalize those obtained in Refs. 21 and 46
for high-j c Josephson contacts in isotropic superconductors
to the case of layered materials. As seen from Eq.~61!, the
core widthL increases withj , diverging atj5 j 08 @this diver-
gence is eliminated by a nonzero interlayer capacitancesCn
~Ref. 21!#. Unlike the Lorentz contraction of the Josephson
vortex for low dissipation~see, e.g., Ref. 35!, the increase of
L(v) is a specific feature of the overdamped case.21 In turn,
the dependence of the core widthL on v gives rise to a
nonlinearV-I characteristic of a layered superconductor ifH
is parallel andj is perpendicular to the layers.

At low magnetic fields, for which the Josephson cores of
neighboring vortices do not overlap, the voltageV at the
defect layer can be obtained from Faraday’s law, namely,
V5f0v/ca(H). Herea(H)@ l is the spacing between vor-
tices andv( j ) is given by Eq.~62!. Hence theV-I charac-
teristic can be written in the form

V5
Rj

A12~ j / j 08!2
, ~64!

where the linear resistivityR is given by

R5
cf0R0

8plylza~H ! j 08
5R0

j 0
j 08

s

a

lz

ly
. ~65!

As seen from Eq.~64!, the nonlinearV( j ) has an upward
curvature~Fig. 4!. The field dependence of the resistivity
R(H) is mostly determined bya(H). If Hc1 for the defect
layer is much smaller than the bulkHc1

b , the lattice spacing
a;lyln@Hc1 /(H2Hc1)# for H'Hc1 and a5f0/2lyH for
Hc1!H,Hc1

b . In the latter case, we obtain the linear field
dependenceR}H, similar to that of the Bardeen-Stephen
model.45

Now we consider the periodic ac signalj (t)5 j acosvt for
the quasistatic regimevt!1, for which one can substitute
j (t) in Eq. ~62!. Then a simple integration of Eq.~62! yields
the following time dependence of the vortex displacement
u(t):

u~ t !5
v0

v
ln
j asinvt1Aj 08

2
2 j a

2cos2vt

Aj 08
2
2 j a

2
. ~66!

This formula describes periodic oscillations of the vortex
positionu(t) from 2um to um . The amplitudeum is given
by

um5
v0
2v

ln
j 081 j a
j 082 j a

. ~67!

For small ac signalsj a! j 08 , the valueum5 j av0 /v j 08 lin-
early increases withj a and is inversely proportional to the
j 08 of the defect layer. Notice that sincev0} j 0

1/2, the ampli-
tude um decreases as the anisotropy factorlz /ly is in-
creased.

Using Eq. ~62!, we can now calculate the mean power
dissipated by the oscillating vortex,Q5f0^v(t) j (t)&/c,
where ^ & stands for the time averaging over the period
2p/v. We obtain

Q5Q0@K~b0!2E~b0!#. ~68!

FIG. 4. The nonlinearV-I characteristic described by Eq.~64!
for the overdamped case.
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HereQ052f0v0 j 08/p, andK(b0) andE(b0) are complete
elliptic integrals of the first and second kinds, respectively,
whereb05 j a / j 08 is the modulus ofK andE.38 For j a! j 08 ,
the dissipated powerQ( j a)5f0v0 j a

2/2c j08 increases qua-
dratically with j a , and diverges logarithmically asj a ap-
proachesj 08 .

46

VI. CONCLUSION

We have considered the Abrikosov vortex with aniso-
tropic Josephson core localized at a planar defect in layered
superconductors. We propose a self-consistent mean-field
approach, which enables one to calculate the vortex structure
analytically, including the core region. We have obtained
formulas for the lower critical fieldHc1, the vortex mass
M , and the nonlinear mobilitym(v), which take into account
both the discreteness of the superconducting matrix and the
parameters of the defect layer. The absence of the normal
core considerably reducesHc1, M , andm compared with an
Abrikosov vortex.

The reducedHc1 leads to preferred flux penetration along
planar defects, which, for example, can manifest itself as
vortex chains localized at the defects in decoration47,48 and
magneto-optical49–51 experiments. This can be due to the
strong deformation of the vortex core caused by weak inter-
layer coupling and the smallj 08 across the defect. As a result,
the core becomes highly anisotropic, its sizel along the lay-
ers essentially exceeding both the transverse core lengthl'
and the interlayer spacing. This can give rise to a highly
anisotropic vortex pinning forcef with respect to the current-
flow direction. The component of the pinning force parallel
to the defect plane is much smaller than the perpendicular
one.24 As a result, the defect becomes a channel for easier
flux motion.19 In addition, the reduction of the vortex mass
and the viscous drag coefficient due to the absence of the
normal core strongly enhances the probability of quantum
vortex tunneling in a pinning potential as compared with

Abrikosov vortices. This can considerably facilitate tempera-
ture independent quantum flux creep in HTS oxides.

The above features may be essential for the interpretation
of current transport along thec axis in HTS oxides, which
often contain numerous planar defects parallel to theab
planes~stacking faults, intergrowths of low-Tc phases, etc.!31

Because of the short coherence length along thec axis, these
defects can strongly reduce the localj 08 as compared toj 0
and thus become a limiting factor for thec-axis current
transport, now determined by vortex dynamics and pinning
along the defects. In this case the measurement ofV( j ) along
the c axis enables one to extractR0(T) and j 08(T), whose
temperature dependence can clarify the character of the su-
perconducting coupling across the defects. For instance, at
j! j 08 , theV-I curve is linear, which allows one to obtain the
R0(T) dependence from Eq.~65!. At the same time, by mea-
suringV( j ) at j. j 08 , one can extractj 08 with the help of Eq.
~64!. Notice here that the character of theV( j ) at j. j 08 can
change significantly withT because of strong temperature
dependence of the McCumber parameter 1/h(T)
5C0R0vJ . As a result, a transition occurs from the over-
damped regimeh@1 at T.Tc to the underdamped regime
h!1 at T!Tc due to a strong decrease of the density of
normal quasiparticles which provide the ohmic dissipation in
Josephson contacts. In turn, the change inh(T) strongly af-
fects the form ofV( j ), which has an upward curvature at
h@1 @see Eq.~64!# and a downward curvature ath!1 typi-
cal for underdamped Josephson contacts.25
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